Bayesian variable selection for Gaussian process regression: Application to chemometric calibration of spectrometers

نویسندگان

  • Tao Chen
  • Bo Wang
چکیده

Gaussian processes have received significant interest for statistical data analysis as a result of the good predictive performance and attractive analytical properties. When developing a Gaussian process regression model with a large number of covariates, the selection of the most informative variables is desired in terms of improved interpretability and prediction accuracy. This paper proposes a Bayesian method, implemented through the Markov chain Monte Carlo sampling, for variable selection. The methodology presented is applied to the chemometric calibration of near infrared spectrometers, and enhanced predictive performance and model interpretation are achieved when compared with benchmark regression method of partial least squares.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian linear regression and variable selection for spectroscopic calibration.

This paper presents a Bayesian approach to the development of spectroscopic calibration models. By formulating the linear regression in a probabilistic framework, a Bayesian linear regression model is derived, and a specific optimization method, i.e. Bayesian evidence approximation, is utilized to estimate the model "hyper-parameters". The relation of the proposed approach to the calibration mo...

متن کامل

Application of Genetic Algorithms for Pixel Selection in MIA-QSAR Studies on Anti-HIV HEPT Analogues for New Design Derivatives

Quantitative structure-activity relationship (QSAR) analysis has been carried out with a series of 107 anti-HIV HEPT compounds with antiviral activity, which was performed by chemometrics methods. Bi-dimensional images were used to calculate some pixels and multivariate image analysis was applied to QSAR modelling of the anti-HIV potential of HEPT analogues by means of multivariate calibration,...

متن کامل

Application of Genetic Algorithms for Pixel Selection in MIA-QSAR Studies on Anti-HIV HEPT Analogues for New Design Derivatives

Quantitative structure-activity relationship (QSAR) analysis has been carried out with a series of 107 anti-HIV HEPT compounds with antiviral activity, which was performed by chemometrics methods. Bi-dimensional images were used to calculate some pixels and multivariate image analysis was applied to QSAR modelling of the anti-HIV potential of HEPT analogues by means of multivariate calibration,...

متن کامل

Chemometric calibration of infrared spectrometers: selection and validation of variables by non-linear models

Data from spectrophotometers form spectra that are sets of a great number of exploitable variables in quantitative chemical analysis; calibration models using chemometric methods must be established to exploit these variables. In order to design these calibration models which are specific to each analyzed parameter, it is advisable to select a reduced number of spectral variables. This paper pr...

متن کامل

Gaussian Process Regression for Multivariate Spectroscopic Calibration

Traditionally multivariate calibration models have been developed using regression based techniques including principal component regression and partial least squares and their non-linear counterparts. This paper proposes the application of Gaussian process regression as an alternative method for the development of a calibration model. By formulating the regression problem in a probabilistic fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 73  شماره 

صفحات  -

تاریخ انتشار 2010